
Kubernetes Resources

Pod
Namespace
Deployment / ReplicaSet
Service / Endpoint
Job / Cronjob
StatefulSets / DaemonSet

Kubernetes Architecture

Kube-Proxy

Cross-Chapter
Topics

Kubernetes Resources

Kubernetes Resources

Kubernetes Official Documentation
Viewing Pods and Nodes

A Pod is the smallest deployable unit in Kubernetes and serves as the basic building block
for running applications in the cluster. Each Pod encapsulates one or more containers,
which share the same resources such as storage, networking, and compute. Containers

Pod

Useful Links:

Architecture:

Detailed Description:

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/

within a Pod are tightly coupled, meaning they always run together on the same node and
share the same network namespace, allowing them to communicate with each other using
localhost .

Typically, a Pod has a single container, but it can host sidecar containers that assist the
main application container with additional tasks like logging, monitoring, or proxying
requests. Pods are ephemeral by nature, designed to be replaceable and scaled according
to workload demands through higher-level Kubernetes abstractions like Deployments or
StatefulSets.

Key characteristics of Pods include:

Shared Networking: All containers in a Pod share the same IP address and port
space.
Shared Storage: Volumes attached to a Pod are shared among all its containers.
Lifecycle Management: Pods are managed by controllers like Deployments,
ReplicaSets, and DaemonSets to ensure desired state is maintained.

Init containers in Kubernetes run before the main app container starts in a pod.

Prepare the environment (e.g., set up files or check conditions)
Run once and finish before the main app starts
Are useful for tasks that your main app doesn't handle well or should not have
access to

Sidecar containers run alongside the app container in a pod to enhance its functionality
without modifying the main app. They can share resources and help with tasks like
logging, monitoring, or proxying.

Ephemeral containers are temporary containers that you can add to an existing Pod to
troubleshoot or inspect it. Unlike regular containers, they are not part of the initial setup
and cannot be restarted. They’re useful when you need to debug or run commands in a
Pod that’s already running.

Command Reference Guide:

Query running pods
kubectl get pods

Query detailed informatoin about pods
kubectl get pods -o wide

Create single pod
kubectl run nginx --image=nginx

Run image / pass environment and command
kubectl run --image=ubuntu ubuntu --env="KEY=VALUE" -- sleep infinity

Get yaml configuration for the resource
kubectl run nginx --image=nginx --dry-run=client -o yaml | tee nginx.yaml

Get specific information of any yaml section
kubectl explain pod.spec.restartPolicy

Create pod resource from yaml configuration file
kubectl create -f nginx.yaml

Apply pod resource from yaml configuration
kubectl apply -f nginx.yaml

Delete pod resource wihtout waiting for graceful shutdown of application (--now)
kubectl delete pod/nginx pod/ubuntu --now

Get full resource description using descripe
kubectl describe pod/nginx

Get logs for a specific container in the pod
kubectl logs pod/nginx -c nginx

If a pod fails use -p to get previouse logs for a specific container in the pod
kubectl logs pod/nginx -c nginx -p

Get shell from running container
kubectl exec --stdin --tty nginx -- /bin/bash
kubectl exec --stdin --tty nginx -c container1 -- /bin/bash # get access to specific container

Combine pod creation
kubectl run nginx --image=nginx --dry-run=client -o yaml | tee nginx.yaml
kubectl run ubuntu --image=ubuntu --dry-run=client -o yaml | tee ubuntu.yaml
{ cat nginx.yaml; echo "---"; cat ubuntu.yaml; } | tee multi_pods.yaml
kubectl apply -f multi_pods.yaml

fail-pod-deploy.yaml:

apiVersion: v1
kind: Pod
metadata:
name: blocked-pod
spec:
restartPolicy: Never
initContainers:
- name: init-fail
 image: busybox
 command: ["sh", "-c", "exit 1"]
containers:
- name: app-container
 image: nginx

success-on-retry-pod-deploy.yaml:

apiVersion: v1
kind: Pod
metadata:
name: blocked-pod
spec:
restartPolicy: Always
initContainers:
- name: init-fail
 image: busybox
 command: ["sh", "-c", "if [! -f /data/ready]; then touch /data/ready; sleep 10; exit 1; else exit 0; fi"]
 volumeMounts:
 - name: shared-data
 mountPath: /data
containers:
- name: app-container
 image: nginx
 volumeMounts:
 - name: shared-data
 mountPath: /data

volumes:
- name: shared-data
 emptyDir: {}

sidecar-pod-deploy.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp
labels:
 app: myapp
spec:
replicas: 1
selector:
 matchLabels:
 app: myapp
template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: myapp
 image: alpine:latest
 command: ['sh', '-c', 'while true; do echo "$(date) logging $(($RANDOM))" >> /opt/logs.txt; sleep 5;
done']
 volumeMounts:
 - name: data
 mountPath: /opt
 - name: logshipper
 image: alpine:latest
 command: ['sh', '-c', 'tail -F /opt/logs.txt']
 volumeMounts:
 - name: data
 mountPath: /opt

 volumes:
 - name: data
 emptyDir: {}

Create init container that will fail. App container will not start
kubectl apply -f fail-pod-deploy.yaml && watch kubectl describe -f blocked.yaml

Create init container that will succed on second try.
kubectl apply -f success-on-retry-pod-deploy.yaml && watch kubectl describe -f blocked.yaml

Run app container along with sidecar helper container
kubectl apply -f sidecar-pod-deploy.yaml && watch kubectl logs $(kubectl get pods -l app=myapp -o
jsonpath='{.items[0].metadata.name}') --all-containers=true

Run ephemeral container (If you only need to inspect and debug the running Pod)
kubectl run ephemeral-demo --image=busybox --restart=Never -- sleep 100000
kubectl debug -it ephemeral-demo --image=busybox:1.28 --target=ephemeral-demo
kubectl describe pod ephemeral-demo

Copy and Add a New Container (If you need to change the environment or add more debugging tools)
kubectl run myapp --image=busybox:1.28 --restart=Never -- sleep 1d
kubectl debug myapp -it --image=ubuntu --share-processes --copy-to=myapp-debug
kubectl get pods

Kubernetes Resources

Kubernetes Official Documentation
Namespaces Walkthrough

Namespace

Useful Links

Architecture

Detailed Description

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/administer-cluster/namespaces-walkthrough/

Kubernetes namespaces are like virtual environments within your Kubernetes cluster.
They help organize and divide resources, making it easier to manage large environments.
For example, you can use namespaces to separate development, staging, and production
environments within the same cluster.

Isolation: Namespaces isolate resources like Pods, Services, and Deployments,
so they don't interfere with each other.
Resource Management: You can apply resource limits (CPU, memory) and
access control to namespaces.
Organization: They help group related resources, making it easier to manage
them.
Access Control: Namespaces can limit who can access certain resources through
Kubernetes RBAC (Role-Based Access Control).
Complexity: Having too many namespaces can complicate management,
especially with network policies or cross-namespace communication.

namespace.yaml

apiVersion: v1
kind: Namespace
metadata:
 name: dev
 labels:
 name: dev

apiVersion: v1
kind: Namespace
metadata:
 name: prod
 labels:

Command Reference Guide

Remeber to use dry-run and tee to check the configuration of each command first.
--dry-run=client -o yaml | tee nginx-deployment.yaml

Create a Namespace using a YAML file (declarative method)

 name: prod

Create namespaces
kubectl create -f namespace.yaml

Get namespaces
kubectl get namespaces --show-labels

Add context spaces (First get user and clustername)
kubectl config view
CLUSTER_NAME=$(kubectl config view --raw -o jsonpath='{.clusters[0].name}')
USER_NAME=$(kubectl config view --raw -o jsonpath='{.users[0].name}')
kubectl config set-context dev --namespace=dev --cluster=$CLUSTER_NAME --user=$USER_NAME
kubectl config set-context prod --namespace=prod --cluster=$CLUSTER_NAME --user=$USER_NAME
We added two new request contexts (dev and prod)
kubectl config view

Switch context
kubectl config use-context dev

Check current context
kubectl config current-context

Create deployment in context dev and check pods
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80
kubectl get pods

Switch context and check pods
kubectl config use-context prod
kubectl get pods

Delete context
kubectl config use-context default
kubectl config delete-context dev
kubectl config delete-context prod

Kubernetes Resources

Kubernetes Official Documentation
Using kubectl to Create a Deployment

Deployment / ReplicaSet

Useful Links

Architecture

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/

Kubernetes Deployments serve as a blueprint for running your application in a cluster.
Building on ReplicaSets , they ensure your application remains in the desired state by
maintaining the defined number of instances.

ReplicaSets take care of the following:

Detailed Description

Ensuring the desired number of Pods are always running
Replacing failed Pods automatically to maintain the specified replicas

On top of that, a Deployment adds features, such as:

Automatically rolling out new versions of your application
Rolling back to a previous version if something goes wrong
Managing updates with strategies like rolling updates or recreating Pods

When a deployment in Kubernetes performs an upgrade (for example, if you change the
image or other pod specifications), a rolling upgrade strategy is created by default. This
manages the ReplicaSets to ensure minimal downtime and meet the constraints set by
maxUnavailable and maxSurge. The Deployment maintains a current ReplicaSet (for the
existing pods) and creates a new ReplicaSet for the updated pods. During the update,
pods are gradually scaled down in the old ReplicaSet and scaled up in the new ReplicaSet.

revisionHistoryLimit The Number of old replicas to retain for rollback.

strategy Defines the deployment strategy, Default RollingUpdate or Recreate .

Recreate: All existing Pods are destryoed before new ones are created
RollingUpdate: Updates Pods in a rolling update fashion (maxUnavailable;
maxUnavailable)

maxUnavailable The maximum number of pods that can be unavailable (not running or
ready) during the update. Default: 25% Ensures a certain number of old pods remain
running during the update to handle requests.

Example: If there are 4 replicas in a Deployment and maxUnavailable is set to 1:

At most, 1 pod can be unavailable during the update.
Kubernetes will ensure at least 3 pods (old or new) are running at any given time.

maxSurge The maximum number of extra pods that can be created beyond the desired
replicas during the update. Default: 25% Determines how many new pods can be created
during the update to replace old pods.

Example: If there are 4 replicas in a Deployment and maxSurge=1:

Up to 5 pods (4 original + 1 new) can be running at once during the update.

nginx-replicaset.yaml

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: nginx-replicaset
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginxdemos/hello
 ports:
 - containerPort: 80

Command Reference Guide

Remeber to use dry-run and tee to check the configuration of each command first.
--dry-run=client -o yaml | tee nginx-deployment.yaml

Create a ReplicaSet using a YAML file (declarative method)

Apply replicaset
kubectl apply -f nginx-replicaset.yaml

Get ReplicaSet informatoin
kubectl get replicaset nginx-replicaset -o wide

Get detailed ReplicaSet information
kubectl describe replicaset/nginx-replicaset

nginx-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: nginx-deployment
 name: nginx-deployment
spec:
 replicas: 25

Check the current Pods running
kubectl get pods

Delete a Pod of the ReplicaSet
FIRST_POD=$(kubectl get pods -l app=nginx -o jsonpath='{.items[0].metadata.name}')
kubectl delete pod $FIRST_POD

Recheck running Pods
kubectl get pods

Change image in yaml to nginxdemos/hello:v0.2 and apply replicaset again
kubectl apply -f nginx-replicaset.yaml

You will encounter that the replicaset was updated - but the pods are still using the old image
kubectl describe replicaset/nginx-replicaset
kubectl describe pod/<podname>

You have to kill and recreate the pods, so the new ones will be created with the new image. (see Hint section)
FIRST_POD=$(kubectl get pods -l app=nginx -o jsonpath='{.items[0].metadata.name}')
kubectl scale rs nginx-replicaset --replicas=0
kubectl scale rs nginx-replicaset --replicas=3
kubectl describe pod/$FIRST_POD

Create a Deplyoment (imperative method)

 selector:
 matchLabels:
 app: nginx-deployment
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: nginx-deployment
 spec:
 containers:
 - image: nginxdemos/hello:0.4
 imagePullPolicy: Always
 name: hello
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
status: {}

Create nginx deployment with the default of one replica
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80

Create nginx deployment with three replicas
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80 --replicas=3

Check deployment
kubectl get deployment -o wide

Get detailed deployment information
kubectl describe deployment

Get ReplicaSet information created by deployment
kubectl get replicasets -o wide

Get History for deployment
kubectl rollout history deployment/nginx-deployment

Annotate inital history entry
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="init nginx deployment"
kubectl rollout history deployment/nginx-deployment

Scale up/down deployment (scale is not changing history)
kubectl scale deployment/nginx-deployment --replicas=2; watch kubectl get pods -o wide
kubectl scale deployment/nginx-deployment --replicas=20; watch kubectl get pods -o wide

Run update and rollback
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
Check image name
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
kubectl get deployment/nginx-deployment -o yaml > nginx-deployment.yaml
check Update yaml modifications under code section
kubectl apply -f nginx-deployment.yaml && kubectl rollout status deployment/nginx-deployment
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="update new version"
kubectl rollout history deployment/nginx-deployment
Recheck image name after update
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
Check replicaset
kubectl get replicaset

ROllback to previouse revision
kubectl rollout undo deployment/nginx-deployment --to-revision=1 && kubectl rollout status deployment/nginx-
deployment
kubectl rollout history deployment/nginx-deployment
check pod image, as it was reverted to old revision
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}

Run into failed state (change image in yaml to nginxdemos/hello:5.1)
kubectl apply -f nginx-deployment.yaml && kubectl rollout status deployment/nginx-deployment
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="failed version"
kubectl rollout history deployment/nginx-deployment
kubectl rollout undo deployment/nginx-deployment --to-revision=3 && kubectl rollout status deployment/nginx-

Deployments manage ReplicaSets, primarily due to historical reasons. There is no
practical need to manually create ReplicaSets (or previously, ReplicationControllers), as
Deployments, built on top of ReplicaSets, offer a more user-friendly and feature-rich
abstraction for managing the application lifecycle, including replication, updates, and
rollbacks.

ReplicaSets do not support auto updates. As long as required number of pods exist
matching the selector labels, replicaset's jobs is done.

When a rollback is applied to a Deployment, Kubernetes creates a new history revision
for the rollback. It doesn’t simply go back to an old revision but treats the rollback as a
new change. This means the rollback gets its own revision number, while the previous
revisions remain saved. This helps you keep track of all changes, including rollbacks.

deployment
check pod image, as it was reverted to healthy revision
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
kubectl rollout history deployment/nginx-deployment

Pause from deplyoment
kubectl rollout pause deployment nginx-deployment
kubectl set image deployment/nginx-deployment nginx=nginx:1.22
kubectl get deployment nginx-deployment -o yaml | grep paused
kubectl rollout resume deployment nginx-deployment
kubectl rollout status deployment nginx-deployment

Delete deployment
kubectl delete deployment/nginx-deployment

Hints

Kubernetes Resources

Kubernetes Official Documentation

Service / Endpoint

a) Why is the service DNS not reachable after creating service?? curl
nginx.default.svc.cluster.local

Useful Links

Architecture

https://kubernetes.io/docs/concepts/services-networking/service/

In Kubernetes, a Service is a way to expose an application running inside a set of Pods as
a network service. It provides a stable IP address and DNS name, allowing access either
from outside the cluster or from other Pods within the cluster. A Service serves as an

Detailed Description

abstraction layer, connecting clients to the appropriate Pods, ensuring that the actual
Pods behind the Service can change without disrupting access.

There are different types of Services in Kubernetes, including:

ClusterIP: The default service type that assigns an internal IP, reachable only
within the cluster. It allows communication between Pods inside the cluster. Kube-
Proxy load balances traffic across pods behind a ClusterIP Service.
NodePort: Exposes the service on a static port across all nodes in the cluster,
allowing external traffic to access the service.
LoadBalancer: In cloud environments, this service type provisions an external
load balancer to distribute traffic to multiple Pods.
ExternalName: Maps a service to an external DNS name, allowing Kubernetes
services to refer to external resources.
Headless Service: A type of ClusterIP service with no assigned IP. It allows direct
access to Pods without a proxy.

Endpoints are associated with a Service and represent the IP addresses of the Pods that
match the Service's selector. When a Service is created, Kubernetes automatically creates
Endpoints for it, enabling traffic forwarding to the correct Pods.

Cluster IP

Command Reference Guide

Create nginx deployment with three replicas
kubectl create deployment nginx --image=nginxdemos/hello --port=80 --replicas=3

Expose application as ClusterIP with port 8080 (ClusterIP is the default if not defined)
kubectl expose deployment nginx --type=ClusterIP --port=8080 --target-port=80
--port=8080: The port exposed by the service (used internally to access the deployment)
--target-port=80: The port on the pods where the application is running

Get services
kubectl get service nginx -o wide

Get full resource description using describe
kubectl describe service/nginx

https://book.tikkle.de/books/cross-chapter-topics/page/kube-proxy
https://book.tikkle.de/books/cross-chapter-topics/page/kube-proxy

NodePort:

LoadBalancer

Get created endpoints
kubectl get endpoints

curl by default service DNS entry
Each curl request gets a different hostname due to Kubernetes' Kube-Proxy load balancing
curl nginx.default.svc.cluster.local

Delete service
kubectl delete service/nginx

Create nginx deployment with three replicas
kubectl create deployment nginx --image=nginxdemos/hello --port=80 --replicas=3

Expose application as NodePort
kubectl expose deployment/nginx --type=NodePort

Get services
kubectl get service nginx -o wide
first Port = application;second Port = NodePort

Get full resource description using describe
kubectl describe service/nginx

Delete service
kubectl delete service/nginx

Create nginx deployment with three replicas
kubectl create deployment nginx --image=nginxdemos/hello --port=80 --replicas=3

Expose application as LoadBalancer
kubectl expose deployment/nginx --type=LoadBalancer --port 8080 --target-port 80

ExternalName

Get services
kubectl get service nginx -o wide
first Port = application;second Port = NodePort

Get full resource description using describe
kubectl describe service/nginx

Delete service
kubectl delete service/nginx

Query running pods
kubectl get pods

Query detailed informatoin about pods
kubectl get pods -o wide

Create single pod
kubectl run nginx --image=nginx

Run image / pass environment and command
kubectl run --image=ubuntu ubuntu --env="KEY=VALUE" -- sleep infinity

Get yaml configuration for the resource
kubectl run nginx --image=nginx --dry-run=client -o yaml | tee nginx.yaml

Get specific information of any yaml section
kubectl explain pod.spec.restartPolicy

Create pod resource from yaml configuration file
kubectl create -f nginx.yaml

Apply pod resource from yaml configuration
kubectl apply -f nginx.yaml

Delete pod resource wihtout waiting for graceful shutdown of application (--now)
kubectl delete pod/nginx pod/ubuntu --now

Headless Service

Get full resource description using descripe
kubectl describe pod/nginx

Get logs for a specific container in the pod
kubectl logs pod/nginx -c nginx

If a pod fails use -p to get previouse logs for a specific container in the pod
kubectl logs pod/nginx -c nginx -p

Combine pod creation
kubectl run nginx --image=nginx --dry-run=client -o yaml | tee nginx.yaml
kubectl run ubuntu --image=ubuntu --dry-run=client -o yaml | tee ubuntu.yaml
{ cat nginx.yaml; echo "---"; cat ubuntu.yaml; } | tee multi_pods.yaml
kubectl apply -f multi_pods.yaml

Query running pods
kubectl get pods

Query detailed informatoin about pods
kubectl get pods -o wide

Create single pod
kubectl run nginx --image=nginx

Run image / pass environment and command
kubectl run --image=ubuntu ubuntu --env="KEY=VALUE" -- sleep infinity

Get yaml configuration for the resource
kubectl run nginx --image=nginx --dry-run=client -o yaml | tee nginx.yaml

Get specific information of any yaml section
kubectl explain pod.spec.restartPolicy

Create pod resource from yaml configuration file
kubectl create -f nginx.yaml

When accessing an external IP (e.g., Node1's external IP), the hostname and IP displayed
on the website may not change. To test Kubernetes' load-balancing behavior, cordon
Node1 and delete the pod running on it. When you call Node1's IP again, kube-proxy will
reroute the traffic to a healthy pod on another node.

Apply pod resource from yaml configuration
kubectl apply -f nginx.yaml

Delete pod resource wihtout waiting for graceful shutdown of application (--now)
kubectl delete pod/nginx pod/ubuntu --now

Get full resource description using descripe
kubectl describe pod/nginx

Get logs for a specific container in the pod
kubectl logs pod/nginx -c nginx

If a pod fails use -p to get previouse logs for a specific container in the pod
kubectl logs pod/nginx -c nginx -p

Combine pod creation
kubectl run nginx --image=nginx --dry-run=client -o yaml | tee nginx.yaml
kubectl run ubuntu --image=ubuntu --dry-run=client -o yaml | tee ubuntu.yaml
{ cat nginx.yaml; echo "---"; cat ubuntu.yaml; } | tee multi_pods.yaml
kubectl apply -f multi_pods.yaml

Hints

Kubernetes Resources

Kubernetes Official Documentation

Job / Cronjob

Useful Links

Architecture

https://kubernetes.io/docs/concepts/workloads/controllers/job/

A Job creates one or more Pods and keeps retrying them until a specified number
successfully finish. Once the desired number of successful completions is reached, the Job
is complete. Deleting a Job also deletes the Pods it created, while suspending it will stop
active Pods until the Job is resumed.

For a simple task, you can create a Job to run a single Pod, which will restart if it fails or is
deleted (e.g., due to a node failure). Jobs can also run multiple Pods at the same time.

the job name .metadata.name should follow rules for DNS subdomain (ideally stricter rules
but cannot be longer 63 chars)

Detailed Description

Non-parallel Jobs:
The Job creates only one Pod
The Job is complete when the Pod successfully finishes

Parallel Jobs with a fixed completion count:
Set .spec.completions to a number greater than 0. (e.g. completions: 5)
The Job is complete when the specified number of Pods have finished
successfully.
Optionally, set .spec.completionMode to "Indexed" if each Pod has a specific
role or task

Parallel Jobs with a work queue:
Leave .spec.completions unset
Set .spec.parallelism to the number of Pods that can run simultaneously (e.g.
parallelism: 3 - default: 1 - parallelism: 0 will pause the job)
The Pods coordinate with each other or an external service to divide the
work
Once any Pod finishes successfully, no new Pods are started, and the Job is
complete when all Pods stop

Restart policy
In .spec.template.spec.restartPolicy , you must set an appropriate restart policy: (
Never or OnFailure)

For Jobs with .spec.completions , you can set .spec.completionMode :
NonIndexed (default): All Pods are identical, and the Job completes when the
specified number of successful Pods (.spec.completions) is reached.
Indexed : Each Pod gets a unique index (from 0 to .spec.completions - 1),
which is available via:

Pod annotation: batch.kubernetes.io/job-completion-index.
Pod label (from Kubernetes v1.28 onwards): batch.kubernetes.io/job-
completion-index.
Environment variable: JOB_COMPLETION_INDEX.
Pod hostname: Follows the pattern $(job-name)-$(index).

Example: Non-parallel Job (Single Pod):

apiVersion: batch/v1
kind: Job
metadata:
name: single-task-job
spec:
template:

 spec:
 containers:
 - name: worker
 image: busybox
 command: ["echo", "Hello World"]
 restartPolicy: Never

Parallel Job with Fixed Completions:

apiVersion: batch/v1
kind: Job
metadata:
name: fixed-task-job
spec:
completions: 5
parallelism: 2
template:
 spec:
 containers:
 - name: worker
 image: busybox
 command: ["echo", "Processing task"]
 restartPolicy: OnFailure

Parallel Job with Work Queue:

apiVersion: batch/v1
kind: Job
metadata:
name: work-queue-job
spec:
parallelism: 3
template:
 spec:
 containers:
 - name: worker

 image: busybox
 command: ["fetch-and-process-task"]
 restartPolicy: Never

Indexed CompletionMode:

apiVersion: batch/v1
kind: Job
metadata:
name: indexed-job
spec:
completions: 3 # Job completes when all 3 indexed Pods have succeeded
parallelism: 2 # At most 2 Pods run simultaneously
completionMode: Indexed
template:
 spec:
 containers:
 - name: worker
 image: busybox
 command:
 - /bin/sh
 - -c
 - |
 echo "Processing task for index $JOB_COMPLETION_INDEX"
 restartPolicy: Never

If you want to run a Job on a schedule, use a CronJob.

Command Reference Guide

Remeber to use dry-run and tee to check the configuration of each command first.
--dry-run=client -o yaml | tee nginx-deployment.yaml

Create a Namespace using a YAML file (declarative method)

apiVersion: v1
kind: Namespace
metadata:
 name: dev
 labels:
 name: dev

apiVersion: v1
kind: Namespace
metadata:
 name: prod
 labels:
 name: prod

Create namespaces
kubectl create -f namespace.yaml

Get namespaces
kubectl get namespaces --show-labels

Add context spaces (First get user and clustername)
kubectl config view
CLUSTER_NAME=$(kubectl config view --raw -o jsonpath='{.clusters[0].name}')
USER_NAME=$(kubectl config view --raw -o jsonpath='{.users[0].name}')
kubectl config set-context dev --namespace=dev --cluster=$CLUSTER_NAME --user=$USER_NAME
kubectl config set-context prod --namespace=prod --cluster=$CLUSTER_NAME --user=$USER_NAME
We added two new request contexts (dev and prod)
kubectl config view

Switch context
kubectl config use-context dev

Check current context
kubectl config current-context

Create deployment in context dev and check pods
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80

kubectl get pods

Switch context and check pods
kubectl config use-context prod
kubectl get pods

Delete context
kubectl config use-context default
kubectl config delete-context dev
kubectl config delete-context prod

Kubernetes Resources

Kubernetes Official Documentation (StatefulSets)
Kubernetes Official Documentation (DaemonSet)

StatefulSets / DaemonSet

Useful Links

Architecture

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Next to deployments, there are also StatefulSets and DaemonSets in Kubernetes, designed
for specific types of workloads.

StatefulSets:

Detailed Description

Purpose : Used for applications that require stable, persistent storage and
consistent network identities (like databases or messaging systems).
Key Features :

Pods are created sequentially with unique, predictable names (e.g., my-
app-0 , my-app-1).
Each Pod gets its own persistent storage (via Persistent Volume Claims)
that remains even if the Pod is deleted.
Useful for applications that need to keep track of their state or require
ordered scaling.

DaemonSets:

Purpose : Ensure that a copy of a Pod runs on every node (or specific nodes)
in the cluster.
Key Features :

Pods are automatically added or removed when nodes are added or
removed.
Commonly used for system-level services like logging, monitoring, or
networking agents (e.g., Fluentd, Prometheus Node Exporter).
Each node gets exactly one Pod.

nginx-statefulset.yaml

apiVersion: v1
kind: Namespace
metadata:
 name: stateful-namespace

apiVersion: apps/v1
kind: StatefulSet

Command Reference Guide

Remeber to use dry-run and tee to check the configuration of each command first.
--dry-run=client -o yaml | tee nginx-deployment.yaml

Create a StatefulSets using a YAML file (declarative method)

metadata:
 name: nginx-statefulset
 namespace: stateful-namespace
spec:
 serviceName: "nginx"
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - minikube-m02
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 - name: nginx-storage
 mountPath: /usr/share/nginx/html
 volumeClaimTemplates:
 - metadata:
 name: nginx-storage
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

 persistentVolumeClaimRetentionPolicy:
 whenScaled: Delete
 whenDeleted: Retain

Change whenDeleted: Retain to whenDeleted: Delete in yaml file and retry full szenario.

nginx-deployment.yaml

Apply the StatefulSet
kubectl apply -f nginx-statefulset.yaml

Write data to pod
kubectl exec -it -n stateful-namespace nginx-statefulset-0 -- /bin/bash
echo "Hello from StatefulSet" > /usr/share/nginx/html/index.html
exit

Delete pod
kubectl delete pod nginx-statefulset-0 -n stateful-namespace --now

Check file since pod is recreated on same node (check nodeAffinity in yaml)
kubectl exec -it -n stateful-namespace nginx-statefulset-0 -- /bin/bash
cat /usr/share/nginx/html/index.html

#Delete the stateful set
kubectl delete statefulset nginx-statefulset -n stateful-namespace

Reaply the statefulset
kubectl apply -f nginx-statefulset.yaml

Check file since pod is recreated on same node (check nodeAffinity in yaml)
kubectl exec -it -n stateful-namespace nginx-statefulset-0 -- /bin/bash
cat /usr/share/nginx/html/index.html

Create a Deplyoment (imperative method)

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: nginx-deployment
 name: nginx-deployment
spec:
 replicas: 25
 selector:
 matchLabels:
 app: nginx-deployment
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: nginx-deployment
 spec:
 containers:
 - image: nginxdemos/hello:0.4
 imagePullPolicy: Always
 name: hello
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
status: {}

Create nginx deployment with the default of one replica
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80

Create nginx deployment with three replicas
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80 --replicas=3

Check deployment
kubectl get deployment -o wide

Get detailed deployment information
kubectl describe deployment

Get ReplicaSet information created by deployment
kubectl get replicasets -o wide

Get History for deployment
kubectl rollout history deployment/nginx-deployment

Annotate inital history entry
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="init nginx deployment"
kubectl rollout history deployment/nginx-deployment

Scale up/down deployment (scale is not changing history)
kubectl scale deployment/nginx-deployment --replicas=2; watch kubectl get pods -o wide
kubectl scale deployment/nginx-deployment --replicas=20; watch kubectl get pods -o wide

Run update and rollback
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
Check image name
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
kubectl get deployment/nginx-deployment -o yaml > nginx-deployment.yaml
check Update yaml modifications under code section
kubectl apply -f nginx-deployment.yaml && kubectl rollout status deployment/nginx-deployment
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="update new version"
kubectl rollout history deployment/nginx-deployment
Recheck image name after update
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
Check replicaset
kubectl get replicaset

ROllback to previouse revision
kubectl rollout undo deployment/nginx-deployment --to-revision=1 && kubectl rollout status deployment/nginx-
deployment
kubectl rollout history deployment/nginx-deployment
check pod image, as it was reverted to old revision

Deployments manage ReplicaSets, primarily due to historical reasons. There is no
practical need to manually create ReplicaSets (or previously, ReplicationControllers), as
Deployments, built on top of ReplicaSets, offer a more user-friendly and feature-rich
abstraction for managing the application lifecycle, including replication, updates, and
rollbacks.

ReplicaSets do not support auto updates. As long as required number of pods exist
matching the selector labels, replicaset's jobs is done.

FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}

Run into failed state (change image in yaml to nginxdemos/hello:5.1)
kubectl apply -f nginx-deployment.yaml && kubectl rollout status deployment/nginx-deployment
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="failed version"
kubectl rollout history deployment/nginx-deployment
kubectl rollout undo deployment/nginx-deployment --to-revision=3 && kubectl rollout status deployment/nginx-
deployment
check pod image, as it was reverted to healthy revision
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
kubectl rollout history deployment/nginx-deployment

Pause from deplyoment
kubectl rollout pause deployment nginx-deployment
kubectl set image deployment/nginx-deployment nginx=nginx:1.22
kubectl get deployment nginx-deployment -o yaml | grep paused
kubectl rollout resume deployment nginx-deployment
kubectl rollout status deployment nginx-deployment

Delete deployment
kubectl delete deployment/nginx-deployment

Hints

When a rollback is applied to a Deployment, Kubernetes creates a new history revision
for the rollback. It doesn’t simply go back to an old revision but treats the rollback as a
new change. This means the rollback gets its own revision number, while the previous
revisions remain saved. This helps you keep track of all changes, including rollbacks.

Kubernetes Architecture

Kubernetes Architecture

Kube-Proxy

