

Kubernetes Official Documentation
Using kubectl to Create a Deployment

Deployment / ReplicaSet

Useful Links

Architecture

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/

Kubernetes Deployments serve as a blueprint for running your application in a cluster.
Building on ReplicaSets , they ensure your application remains in the desired state by
maintaining the defined number of instances.

ReplicaSets take care of the following:

Detailed Description

Ensuring the desired number of Pods are always running
Replacing failed Pods automatically to maintain the specified replicas

On top of that, a Deployment adds features, such as:

Automatically rolling out new versions of your application
Rolling back to a previous version if something goes wrong
Managing updates with strategies like rolling updates or recreating Pods

When a deployment in Kubernetes performs an upgrade (for example, if you change the
image or other pod specifications), a rolling upgrade strategy is created by default. This
manages the ReplicaSets to ensure minimal downtime and meet the constraints set by
maxUnavailable and maxSurge. The Deployment maintains a current ReplicaSet (for the
existing pods) and creates a new ReplicaSet for the updated pods. During the update,
pods are gradually scaled down in the old ReplicaSet and scaled up in the new ReplicaSet.

revisionHistoryLimit The Number of old replicas to retain for rollback.

strategy Defines the deployment strategy, Default RollingUpdate or Recreate .

Recreate: All existing Pods are destryoed before new ones are created
RollingUpdate: Updates Pods in a rolling update fashion (maxUnavailable;
maxUnavailable)

maxUnavailable The maximum number of pods that can be unavailable (not running or
ready) during the update. Default: 25% Ensures a certain number of old pods remain
running during the update to handle requests.

Example: If there are 4 replicas in a Deployment and maxUnavailable is set to 1:

At most, 1 pod can be unavailable during the update.
Kubernetes will ensure at least 3 pods (old or new) are running at any given time.

maxSurge The maximum number of extra pods that can be created beyond the desired
replicas during the update. Default: 25% Determines how many new pods can be created
during the update to replace old pods.

Example: If there are 4 replicas in a Deployment and maxSurge=1:

Up to 5 pods (4 original + 1 new) can be running at once during the update.

nginx-replicaset.yaml

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: nginx-replicaset
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginxdemos/hello
 ports:
 - containerPort: 80

Command Reference Guide

Remeber to use dry-run and tee to check the configuration of each command first.
--dry-run=client -o yaml | tee nginx-deployment.yaml

Create a ReplicaSet using a YAML file (declarative method)

Apply replicaset
kubectl apply -f nginx-replicaset.yaml

Get ReplicaSet informatoin
kubectl get replicaset nginx-replicaset -o wide

Get detailed ReplicaSet information
kubectl describe replicaset/nginx-replicaset

nginx-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: nginx-deployment
 name: nginx-deployment
spec:
 replicas: 25

Check the current Pods running
kubectl get pods

Delete a Pod of the ReplicaSet
FIRST_POD=$(kubectl get pods -l app=nginx -o jsonpath='{.items[0].metadata.name}')
kubectl delete pod $FIRST_POD

Recheck running Pods
kubectl get pods

Change image in yaml to nginxdemos/hello:v0.2 and apply replicaset again
kubectl apply -f nginx-replicaset.yaml

You will encounter that the replicaset was updated - but the pods are still using the old image
kubectl describe replicaset/nginx-replicaset
kubectl describe pod/<podname>

You have to kill and recreate the pods, so the new ones will be created with the new image. (see Hint section)
FIRST_POD=$(kubectl get pods -l app=nginx -o jsonpath='{.items[0].metadata.name}')
kubectl scale rs nginx-replicaset --replicas=0
kubectl scale rs nginx-replicaset --replicas=3
kubectl describe pod/$FIRST_POD

Create a Deplyoment (imperative method)

 selector:
 matchLabels:
 app: nginx-deployment
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: nginx-deployment
 spec:
 containers:
 - image: nginxdemos/hello:0.4
 imagePullPolicy: Always
 name: hello
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
status: {}

Create nginx deployment with the default of one replica
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80

Create nginx deployment with three replicas
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80 --replicas=3

Check deployment
kubectl get deployment -o wide

Get detailed deployment information
kubectl describe deployment

Get ReplicaSet information created by deployment
kubectl get replicasets -o wide

Get History for deployment
kubectl rollout history deployment/nginx-deployment

Annotate inital history entry
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="init nginx deployment"
kubectl rollout history deployment/nginx-deployment

Scale up/down deployment (scale is not changing history)
kubectl scale deployment/nginx-deployment --replicas=2; watch kubectl get pods -o wide
kubectl scale deployment/nginx-deployment --replicas=20; watch kubectl get pods -o wide

Run update and rollback
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
Check image name
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
kubectl get deployment/nginx-deployment -o yaml > nginx-deployment.yaml
check Update yaml modifications under code section
kubectl apply -f nginx-deployment.yaml && kubectl rollout status deployment/nginx-deployment
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="update new version"
kubectl rollout history deployment/nginx-deployment
Recheck image name after update
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
Check replicaset
kubectl get replicaset

ROllback to previouse revision
kubectl rollout undo deployment/nginx-deployment --to-revision=1 && kubectl rollout status deployment/nginx-
deployment
kubectl rollout history deployment/nginx-deployment
check pod image, as it was reverted to old revision
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}

Run into failed state (change image in yaml to nginxdemos/hello:5.1)
kubectl apply -f nginx-deployment.yaml && kubectl rollout status deployment/nginx-deployment
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="failed version"
kubectl rollout history deployment/nginx-deployment
kubectl rollout undo deployment/nginx-deployment --to-revision=3 && kubectl rollout status deployment/nginx-
deployment

Deployments manage ReplicaSets, primarily due to historical reasons. There is no
practical need to manually create ReplicaSets (or previously, ReplicationControllers), as
Deployments, built on top of ReplicaSets, offer a more user-friendly and feature-rich
abstraction for managing the application lifecycle, including replication, updates, and
rollbacks.

ReplicaSets do not support auto updates. As long as required number of pods exist
matching the selector labels, replicaset's jobs is done.

When a rollback is applied to a Deployment, Kubernetes creates a new history revision
for the rollback. It doesn’t simply go back to an old revision but treats the rollback as a
new change. This means the rollback gets its own revision number, while the previous
revisions remain saved. This helps you keep track of all changes, including rollbacks.

check pod image, as it was reverted to healthy revision
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
kubectl rollout history deployment/nginx-deployment

Pause from deplyoment
kubectl rollout pause deployment nginx-deployment
kubectl set image deployment/nginx-deployment nginx=nginx:1.22
kubectl get deployment nginx-deployment -o yaml | grep paused
kubectl rollout resume deployment nginx-deployment
kubectl rollout status deployment nginx-deployment

Delete deployment
kubectl delete deployment/nginx-deployment

Hints

Revision #28
Created 23 November 2024 09:26:35 by Admin
Updated 26 November 2024 20:50:35 by Admin

