
Kubernetes Official Documentation

Job / Cronjob

Useful Links

Architecture

https://kubernetes.io/docs/concepts/workloads/controllers/job/

A Job creates one or more Pods and keeps retrying them until a specified number
successfully finish. Once the desired number of successful completions is reached, the Job
is complete. Deleting a Job also deletes the Pods it created, while suspending it will stop
active Pods until the Job is resumed.

For a simple task, you can create a Job to run a single Pod, which will restart if it fails or is
deleted (e.g., due to a node failure). Jobs can also run multiple Pods at the same time.

the job name .metadata.name should follow rules for DNS subdomain (ideally stricter rules
but cannot be longer 63 chars)

Detailed Description

Non-parallel Jobs:
The Job creates only one Pod
The Job is complete when the Pod successfully finishes

Parallel Jobs with a fixed completion count:
Set .spec.completions to a number greater than 0. (e.g. completions: 5)
The Job is complete when the specified number of Pods have finished
successfully.
Optionally, set .spec.completionMode to "Indexed" if each Pod has a specific
role or task

Parallel Jobs with a work queue:
Leave .spec.completions unset
Set .spec.parallelism to the number of Pods that can run simultaneously (e.g.
parallelism: 3 - default: 1 - parallelism: 0 will pause the job)
The Pods coordinate with each other or an external service to divide the
work
Once any Pod finishes successfully, no new Pods are started, and the Job is
complete when all Pods stop

Restart policy
In .spec.template.spec.restartPolicy , you must set an appropriate restart policy: (
Never or OnFailure)

For Jobs with .spec.completions , you can set .spec.completionMode :
NonIndexed (default): All Pods are identical, and the Job completes when the
specified number of successful Pods (.spec.completions) is reached.
Indexed : Each Pod gets a unique index (from 0 to .spec.completions - 1),
which is available via:

Pod annotation: batch.kubernetes.io/job-completion-index.
Pod label (from Kubernetes v1.28 onwards): batch.kubernetes.io/job-
completion-index.
Environment variable: JOB_COMPLETION_INDEX.
Pod hostname: Follows the pattern $(job-name)-$(index).

Example: Non-parallel Job (Single Pod):

apiVersion: batch/v1
kind: Job
metadata:
name: single-task-job
spec:
template:
 spec:

 containers:
 - name: worker
 image: busybox
 command: ["echo", "Hello World"]
 restartPolicy: Never

Parallel Job with Fixed Completions:

apiVersion: batch/v1
kind: Job
metadata:
name: fixed-task-job
spec:
completions: 5
parallelism: 2
template:
 spec:
 containers:
 - name: worker
 image: busybox
 command: ["echo", "Processing task"]
 restartPolicy: OnFailure

Parallel Job with Work Queue:

apiVersion: batch/v1
kind: Job
metadata:
name: work-queue-job
spec:
parallelism: 3
template:
 spec:
 containers:
 - name: worker
 image: busybox

 command: ["fetch-and-process-task"]
 restartPolicy: Never

Indexed CompletionMode:

apiVersion: batch/v1
kind: Job
metadata:
name: indexed-job
spec:
completions: 3 # Job completes when all 3 indexed Pods have succeeded
parallelism: 2 # At most 2 Pods run simultaneously
completionMode: Indexed
template:
 spec:
 containers:
 - name: worker
 image: busybox
 command:
 - /bin/sh
 - -c
 - |
 echo "Processing task for index $JOB_COMPLETION_INDEX"
 restartPolicy: Never

If you want to run a Job on a schedule, use a CronJob.

Command Reference Guide

Remeber to use dry-run and tee to check the configuration of each command first.
--dry-run=client -o yaml | tee nginx-deployment.yaml

Create a Namespace using a YAML file (declarative method)

apiVersion: v1
kind: Namespace
metadata:
 name: dev
 labels:
 name: dev

apiVersion: v1
kind: Namespace
metadata:
 name: prod
 labels:
 name: prod

Create namespaces
kubectl create -f namespace.yaml

Get namespaces
kubectl get namespaces --show-labels

Add context spaces (First get user and clustername)
kubectl config view
CLUSTER_NAME=$(kubectl config view --raw -o jsonpath='{.clusters[0].name}')
USER_NAME=$(kubectl config view --raw -o jsonpath='{.users[0].name}')
kubectl config set-context dev --namespace=dev --cluster=$CLUSTER_NAME --user=$USER_NAME
kubectl config set-context prod --namespace=prod --cluster=$CLUSTER_NAME --user=$USER_NAME
We added two new request contexts (dev and prod)
kubectl config view

Switch context
kubectl config use-context dev

Check current context
kubectl config current-context

Create deployment in context dev and check pods
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80
kubectl get pods

Switch context and check pods
kubectl config use-context prod
kubectl get pods

Delete context
kubectl config use-context default
kubectl config delete-context dev
kubectl config delete-context prod

Revision #10
Created 24 November 2024 18:55:26 by Admin
Updated 26 November 2024 13:21:53 by Admin

