
Kubernetes Official Documentation
Viewing Pods and Nodes

A Pod is the smallest deployable unit in Kubernetes and serves as the basic building block
for running applications in the cluster. Each Pod encapsulates one or more containers,
which share the same resources such as storage, networking, and compute. Containers
within a Pod are tightly coupled, meaning they always run together on the same node and

Pod

Useful Links:

Architecture:

Detailed Description:

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/

share the same network namespace, allowing them to communicate with each other using
localhost .

Typically, a Pod has a single container, but it can host sidecar containers that assist the
main application container with additional tasks like logging, monitoring, or proxying
requests. Pods are ephemeral by nature, designed to be replaceable and scaled according
to workload demands through higher-level Kubernetes abstractions like Deployments or
StatefulSets.

Key characteristics of Pods include:

Shared Networking: All containers in a Pod share the same IP address and port
space.
Shared Storage: Volumes attached to a Pod are shared among all its containers.
Lifecycle Management: Pods are managed by controllers like Deployments,
ReplicaSets, and DaemonSets to ensure desired state is maintained.

Init containers in Kubernetes run before the main app container starts in a pod.

Prepare the environment (e.g., set up files or check conditions)
Run once and finish before the main app starts
Are useful for tasks that your main app doesn't handle well or should not have
access to

Sidecar containers run alongside the app container in a pod to enhance its functionality
without modifying the main app. They can share resources and help with tasks like
logging, monitoring, or proxying.

Ephemeral containers are temporary containers that you can add to an existing Pod to
troubleshoot or inspect it. Unlike regular containers, they are not part of the initial setup
and cannot be restarted. They’re useful when you need to debug or run commands in a
Pod that’s already running.

Command Reference Guide:

Query running pods
kubectl get pods

Query detailed informatoin about pods
kubectl get pods -o wide

Create single pod

kubectl run nginx --image=nginx

Run image / pass environment and command
kubectl run --image=ubuntu ubuntu --env="KEY=VALUE" -- sleep infinity

Get yaml configuration for the resource
kubectl run nginx --image=nginx --dry-run=client -o yaml | tee nginx.yaml

Get specific information of any yaml section
kubectl explain pod.spec.restartPolicy

Create pod resource from yaml configuration file
kubectl create -f nginx.yaml

Apply pod resource from yaml configuration
kubectl apply -f nginx.yaml

Delete pod resource wihtout waiting for graceful shutdown of application (--now)
kubectl delete pod/nginx pod/ubuntu --now

Get full resource description using descripe
kubectl describe pod/nginx

Get logs for a specific container in the pod
kubectl logs pod/nginx -c nginx

If a pod fails use -p to get previouse logs for a specific container in the pod
kubectl logs pod/nginx -c nginx -p

Get shell from running container
kubectl exec --stdin --tty nginx -- /bin/bash
kubectl exec --stdin --tty nginx -c container1 -- /bin/bash # get access to specific container

Combine pod creation
kubectl run nginx --image=nginx --dry-run=client -o yaml | tee nginx.yaml
kubectl run ubuntu --image=ubuntu --dry-run=client -o yaml | tee ubuntu.yaml
{ cat nginx.yaml; echo "---"; cat ubuntu.yaml; } | tee multi_pods.yaml
kubectl apply -f multi_pods.yaml

fail-pod-deploy.yaml:

apiVersion: v1
kind: Pod
metadata:
name: blocked-pod
spec:
restartPolicy: Never
initContainers:
- name: init-fail
 image: busybox
 command: ["sh", "-c", "exit 1"]
containers:
- name: app-container
 image: nginx

success-on-retry-pod-deploy.yaml:

apiVersion: v1
kind: Pod
metadata:
name: blocked-pod
spec:
restartPolicy: Always
initContainers:
- name: init-fail
 image: busybox
 command: ["sh", "-c", "if [! -f /data/ready]; then touch /data/ready; sleep 10; exit 1; else exit 0; fi"]
 volumeMounts:
 - name: shared-data
 mountPath: /data
containers:
- name: app-container
 image: nginx
 volumeMounts:
 - name: shared-data
 mountPath: /data

volumes:
- name: shared-data
 emptyDir: {}

sidecar-pod-deploy.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp
labels:
 app: myapp
spec:
replicas: 1
selector:
 matchLabels:
 app: myapp
template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: myapp
 image: alpine:latest
 command: ['sh', '-c', 'while true; do echo "$(date) logging $(($RANDOM))" >> /opt/logs.txt; sleep 5;
done']
 volumeMounts:
 - name: data
 mountPath: /opt
 - name: logshipper
 image: alpine:latest
 command: ['sh', '-c', 'tail -F /opt/logs.txt']
 volumeMounts:
 - name: data
 mountPath: /opt

 volumes:
 - name: data
 emptyDir: {}

Create init container that will fail. App container will not start
kubectl apply -f fail-pod-deploy.yaml && watch kubectl describe -f blocked.yaml

Create init container that will succed on second try.
kubectl apply -f success-on-retry-pod-deploy.yaml && watch kubectl describe -f blocked.yaml

Run app container along with sidecar helper container
kubectl apply -f sidecar-pod-deploy.yaml && watch kubectl logs $(kubectl get pods -l app=myapp -o
jsonpath='{.items[0].metadata.name}') --all-containers=true

Run ephemeral container (If you only need to inspect and debug the running Pod)
kubectl run ephemeral-demo --image=busybox --restart=Never -- sleep 100000
kubectl debug -it ephemeral-demo --image=busybox:1.28 --target=ephemeral-demo
kubectl describe pod ephemeral-demo

Copy and Add a New Container (If you need to change the environment or add more debugging tools)
kubectl run myapp --image=busybox:1.28 --restart=Never -- sleep 1d
kubectl debug myapp -it --image=ubuntu --share-processes --copy-to=myapp-debug
kubectl get pods

Revision #14
Created 22 November 2024 19:25:21 by Admin
Updated 30 November 2024 17:04:33 by Admin

