

Kubernetes Official Documentation (StatefulSets)
Kubernetes Official Documentation (DaemonSet)

StatefulSets / DaemonSet

Useful Links

Architecture

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Next to deployments, there are also StatefulSets and DaemonSets in Kubernetes, designed
for specific types of workloads.

StatefulSets:

Detailed Description

Purpose : Used for applications that require stable, persistent storage and
consistent network identities (like databases or messaging systems).
Key Features :

Pods are created sequentially with unique, predictable names (e.g., my-
app-0 , my-app-1).
Each Pod gets its own persistent storage (via Persistent Volume Claims)
that remains even if the Pod is deleted.
Useful for applications that need to keep track of their state or require
ordered scaling.

DaemonSets:

Purpose : Ensure that a copy of a Pod runs on every node (or specific nodes)
in the cluster.
Key Features :

Pods are automatically added or removed when nodes are added or
removed.
Commonly used for system-level services like logging, monitoring, or
networking agents (e.g., Fluentd, Prometheus Node Exporter).
Each node gets exactly one Pod.

nginx-statefulset.yaml

apiVersion: v1
kind: Namespace
metadata:
 name: stateful-namespace

apiVersion: apps/v1
kind: StatefulSet
metadata:

Command Reference Guide

Remeber to use dry-run and tee to check the configuration of each command first.
--dry-run=client -o yaml | tee nginx-deployment.yaml

Create a StatefulSets using a YAML file (declarative method)

 name: nginx-statefulset
 namespace: stateful-namespace
spec:
 serviceName: "nginx"
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - minikube-m02
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 - name: nginx-storage
 mountPath: /usr/share/nginx/html
 volumeClaimTemplates:
 - metadata:
 name: nginx-storage
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 persistentVolumeClaimRetentionPolicy:
 whenScaled: Delete

 whenDeleted: Retain

Change whenDeleted: Retain to whenDeleted: Delete in yaml file and retry full szenario.

nginx-deployment.yaml

apiVersion: apps/v1
kind: Deployment

Apply the StatefulSet
kubectl apply -f nginx-statefulset.yaml

Write data to pod
kubectl exec -it -n stateful-namespace nginx-statefulset-0 -- /bin/bash
echo "Hello from StatefulSet" > /usr/share/nginx/html/index.html
exit

Delete pod
kubectl delete pod nginx-statefulset-0 -n stateful-namespace --now

Check file since pod is recreated on same node (check nodeAffinity in yaml)
kubectl exec -it -n stateful-namespace nginx-statefulset-0 -- /bin/bash
cat /usr/share/nginx/html/index.html

#Delete the stateful set
kubectl delete statefulset nginx-statefulset -n stateful-namespace

Reaply the statefulset
kubectl apply -f nginx-statefulset.yaml

Check file since pod is recreated on same node (check nodeAffinity in yaml)
kubectl exec -it -n stateful-namespace nginx-statefulset-0 -- /bin/bash
cat /usr/share/nginx/html/index.html

Create a Deplyoment (imperative method)

metadata:
 labels:
 app: nginx-deployment
 name: nginx-deployment
spec:
 replicas: 25
 selector:
 matchLabels:
 app: nginx-deployment
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: nginx-deployment
 spec:
 containers:
 - image: nginxdemos/hello:0.4
 imagePullPolicy: Always
 name: hello
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
status: {}

Create nginx deployment with the default of one replica
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80

Create nginx deployment with three replicas
kubectl create deployment nginx-deployment --image=nginxdemos/hello --port=80 --replicas=3

Check deployment
kubectl get deployment -o wide

Get detailed deployment information
kubectl describe deployment

Get ReplicaSet information created by deployment
kubectl get replicasets -o wide

Get History for deployment
kubectl rollout history deployment/nginx-deployment

Annotate inital history entry
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="init nginx deployment"
kubectl rollout history deployment/nginx-deployment

Scale up/down deployment (scale is not changing history)
kubectl scale deployment/nginx-deployment --replicas=2; watch kubectl get pods -o wide
kubectl scale deployment/nginx-deployment --replicas=20; watch kubectl get pods -o wide

Run update and rollback
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
Check image name
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
kubectl get deployment/nginx-deployment -o yaml > nginx-deployment.yaml
check Update yaml modifications under code section
kubectl apply -f nginx-deployment.yaml && kubectl rollout status deployment/nginx-deployment
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="update new version"
kubectl rollout history deployment/nginx-deployment
Recheck image name after update
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
Check replicaset
kubectl get replicaset

ROllback to previouse revision
kubectl rollout undo deployment/nginx-deployment --to-revision=1 && kubectl rollout status deployment/nginx-
deployment
kubectl rollout history deployment/nginx-deployment
check pod image, as it was reverted to old revision
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}

Deployments manage ReplicaSets, primarily due to historical reasons. There is no
practical need to manually create ReplicaSets (or previously, ReplicationControllers), as
Deployments, built on top of ReplicaSets, offer a more user-friendly and feature-rich
abstraction for managing the application lifecycle, including replication, updates, and
rollbacks.

ReplicaSets do not support auto updates. As long as required number of pods exist
matching the selector labels, replicaset's jobs is done.

When a rollback is applied to a Deployment, Kubernetes creates a new history revision
for the rollback. It doesn’t simply go back to an old revision but treats the rollback as a
new change. This means the rollback gets its own revision number, while the previous
revisions remain saved. This helps you keep track of all changes, including rollbacks.

Run into failed state (change image in yaml to nginxdemos/hello:5.1)
kubectl apply -f nginx-deployment.yaml && kubectl rollout status deployment/nginx-deployment
kubectl annotate deployment/nginx-deployment kubernetes.io/change-cause="failed version"
kubectl rollout history deployment/nginx-deployment
kubectl rollout undo deployment/nginx-deployment --to-revision=3 && kubectl rollout status deployment/nginx-
deployment
check pod image, as it was reverted to healthy revision
FIRST_POD=$(kubectl get pods -l app=nginx-deployment -o jsonpath='{.items[0].metadata.name}')
kubectl get pod $FIRST_POD -o jsonpath='{.spec.containers[0]}'}
kubectl rollout history deployment/nginx-deployment

Pause from deplyoment
kubectl rollout pause deployment nginx-deployment
kubectl set image deployment/nginx-deployment nginx=nginx:1.22
kubectl get deployment nginx-deployment -o yaml | grep paused
kubectl rollout resume deployment nginx-deployment
kubectl rollout status deployment nginx-deployment

Delete deployment
kubectl delete deployment/nginx-deployment

Hints

Revision #5
Created 28 November 2024 17:02:24 by Admin
Updated 29 November 2024 16:22:19 by Admin

