
Autoscaling
Serverless
Community and Governance
Roles and Personas
Open Standards

Cloud Native
Architecture



Horizontal Pod Autoscaler (HPA):
Scales Pods based on resource utilization (CPU, memory, custom metrics).
Monitors and adjusts Pod replicas dynamically.

Vertical Pod Autoscaler (VPA):
Adjusts resource requests/limits (CPU, memory) for Pods.
Optimizes resource allocation for individual Pods.

Cluster Autoscaler:
Scales nodes in a cluster up or down based on resource demands.
Adds/removes nodes when Pods can't be scheduled due to resource
constraints.

Custom Metrics Autoscaler:
Scales based on custom metrics (e.g., application performance metrics).

Scaling Policies:
Define minimum and maximum replica limits.
Set scaling thresholds (e.g., CPU, memory utilization).

Autoscaling
Autoscaling in Kubernetes (KCNA)



Serverless Overview:
No infrastructure management.
Auto-scaling, event-driven execution.

Serverless on Kubernetes:
Use tools like Knative, Fission.
Event-driven, auto-scaling on Kubernetes.

Knative:
Extends Kubernetes for serverless workloads.
Auto-scaling, routing, event-driven.

Fission:
Serverless framework for Kubernetes.
Functions-as-a-service (FaaS).

Benefits:
Focus on code, not infrastructure.
Dynamic scaling based on demand.

Serverless



CNCF Mission:
Promote cloud-native computing ubiquity.
Support open-source projects for scalable, resilient, and manageable
applications.

Project Maturity Levels (CNCF):
Sandbox: Experimentation and community support.
Incubation: Maturity, traction, and growing community.
Graduated: Stability, security, and widespread adoption.

Crossing the Chasm:
Transition from Incubated to Graduated.
Indicates maturity, stability, and enterprise readiness.

Technical Oversight Committee (TOC):
Evaluates and oversees CNCF project maturity.

Special Interest Group (SIG) / Technical Advisory Group (TAG):
SIG (formerly TAG) represents community-driven initiatives.
TAG differentiates from Kubernetes SIGs.

Project Maturity Factors:
Adoption, change rate, external committers, and adherence to the CNCF
Code of Conduct.

Conflict Resolution:
Open discussion, followed by voting and consensus.

Community and Governance

https://book.tikkle.de/uploads/images/gallery/2024-11/crossing-the-chasm1.png


DevOps Engineer:
Bridges development and operations.
Optimizes processes, automates workflows, ensures smooth releases.

Site Reliability Engineer (SRE):
Ensures reliability, scalability, and performance of systems.
Combines development and operations expertise.

CloudOps Engineer:
Manages and optimizes workloads on cloud infrastructure.
Ensures secure, reliable, and efficient cloud services.

DevSecOps Engineer:
Integrates security into DevOps processes.
Ensures security is part of the entire software lifecycle.

Full Stack Developer:
Works on both frontend and backend development.
Handles user interfaces and server-side logic.

Cloud Architect:
Designs cloud applications and infrastructure.
Focuses on scalability, reliability, and cost-effectiveness.

Data Engineer:
Designs and builds data systems and pipelines.
Focuses on scalability, efficiency, and reliability.

Security Engineer:
Implements and enforces security best practices.
Focuses on secure architectures, risk assessments, and compliance.

FinOps:
Manages and optimizes financial aspects of cloud operations.
Ensures cost-effective use of cloud resources.

Roles and Personas
 



Definition:
Public, open specifications for interoperability.
Avoids vendor lock-in, promotes flexibility and integration.

CNCF & Open Standards:
Promotes open standards for cloud-native technologies (e.g., Kubernetes,
Helm).
Ensures cross-platform compatibility.

OCI (Open Container Initiative):
Defines standards for container runtimes and images.
runC: First open standard for container runtimes.
Runtime Specification: Standardizes container execution.
Image Specification: Defines format for container images (layers,
metadata).
Distribution Specification: API for managing container images across
systems.

Container Storage Interface (CSI):
Open standard for storage integration in container orchestration.
Allows compatibility with multiple storage solutions through a single plugin.

Container Runtime Interface (CRI):
API for Kubernetes to interact with different container runtimes.
Provides flexibility in choosing containerization solutions.

Benefits of Open Standards:
Promotes interoperability between vendors and technologies.
Ensures flexibility, avoiding reliance on a single vendor.

Open Standards


