Runtime

1. What is Container Runtime?

e A container runtime is software responsible for running containers, managing
their lifecycle (start, stop, execute), and interacting with the operating
system to create and manage containers.

2. Kubernetes and Container Runtime:

e Kubernetes interacts with the container runtime through the Container
Runtime Interface (CRI).

e The container runtime is responsible for pulling container images, creating
containers, running them, and managing their lifecycle on a node.

3. Popular Container Runtimes in Kubernetes:

e Docker (historically the most common, though deprecated in Kubernetes as
of v1.20+ in favor of other runtimes).

e containerd: A high-performance container runtime used by Kubernetes,
focused on running containers.

e CRI-O: A lightweight container runtime specifically built for Kubernetes,
adhering strictly to the Kubernetes Container Runtime Interface (CRI).

e runc: The low-level container runtime that creates and runs containers
based on the OCI (Open Container Initiative) standards; often used by
containerd and CRI-O.

4. Container Runtime Interface (CRI):

o A Kubernetes API that allows the kubelet to communicate with various
container runtimes.

e Ensures that Kubernetes can support multiple runtimes (e.g., Docker,
containerd, CRI-O) by abstracting runtime-specific details.

5. Runtime Features:

o Container Image Management: Pulling, caching, and running images.

o Container Lifecycle Management: Starting, stopping, and cleaning up
containers.

e Namespaces & Cgroups: Providing isolation for containers (ensuring they
have their own process space, network, etc.).

6. Runtime in Kubernetes Workflow:

o Kubelet requests container runtimes to start or stop containers on a node.

e PodSpec in Kubernetes specifies what containers to run; the runtime
manages the execution.

7. Runtime Security Considerations:



e Using runtime security tools to scan container images and ensure
compliance with security standards.

e Enforcing security policies through runtime, such as restricting container
privileges (user IDs, rootless containers).

8. Transition from Docker to containerd/CRI-O:

e As of Kubernetes 1.20+, Docker is no longer the default container runtime.

e Docker is replaced with containerd or CRI-O for better integration with
Kubernetes.

In the KCNA exam, understanding how Kubernetes interacts with container runtimes
and the different runtime options is essential, particularly focusing on how Kubernetes
uses the Container Runtime Interface (CRI) to communicate with container runtimes
like containerd or CRI-O.

Revision #2
Created 18 November 2024 21:51:31 by Admin
Updated 21 November 2024 20:00:03 by Admin



